Oscillation results for second order scalar and matrix difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Oscillation Results for Second Order Neutral Type Difference Equations

This paper is concerned with the oscillatory behavior of second order neutral difference equations. Four oscillation theorems for such equations are established and examples are given to illustrate the results. Mathematics subject classification (2010): 39A11.

متن کامل

Oscillation criteria for second-order linear difference equations

A non-trivial solution of (1) is called oscillatory if for every N > 0 there exists an n > N such that X,X n + , 6 0. If one non-trivial solution of (1) is oscillatory then, by virtue of Sturm’s separation theorem for difference equations (see, e.g., [S]), all non-trivial solutions are oscillatory, so, in studying the question of whether a solution {x,> of (1) is oscillatory, it is no restricti...

متن کامل

Oscillation theorems for second-order nonlinear delay difference equations

By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation ∆(pn (∆xn) ) + qnf(xn−σ) = 0, n = 0, 1, 2, . . . ,

متن کامل

Oscillation Criteria for Nonlinear Second Order Matrix Differential Equations

Abstract. The object of this paper is to present sufficient conditions for the oscillation of certain solutions of the second order, nonlinear matrix differential equation. The oscillation criteria obtained here improve the recent results of the author and E. C. Tomastik. The methods employed in the paper extend a technique introduced by H. C. Howard and for the special linear version of the no...

متن کامل

Oscillation Results for Third Order Half-linear Neutral Difference Equations

In this paper some new sufficient conditions for the oscillation of solutions of the third order half-linear difference equations ∆ ( an(∆ (xn + bnh(xn−δ))) α ) + qnf(xn+1−τ ) = 0 and ∆ ( an(∆ (xn − bnh(xn−δ))) α ) + qnf(xn+1−τ ) = 0 are established. Some examples are presented to illustrate the main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1994

ISSN: 0898-1221

DOI: 10.1016/0898-1221(94)00093-x